Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Breath Res ; 15(1)2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33045691

RESUMO

Particulate air pollution is associated with adverse respiratory effects and is a major factor for premature deaths.In-vitroassays are commonly used for investigating the direct cytotoxicity and inflammatory impacts due to particulate matter (PM) exposure. However, biological tests are often labor-intensive, destructive and limited to endpoints measured offline at single time points, making it impossible to observe the progression of cell response upon exposure. Here we explored the potential of a high-resolution proton transfer reaction mass spectrometer (PTR-MS) to detect the volatile organic compounds (VOCs) emitted by human bronchial epithelial cells (BEAS-2B) upon exposure to PM. Cells were exposed to single components (1,4-naphthoquinone and Cu(II)) known to induce oxidative stress. We also tested filter extracts of aerosols generated in a smog chamber, including fresh and aged wood burning emissions, as well asα-pinene secondary organic aerosol (SOA). We found that 1,4-naphthoquinone was rapidly internalized by the cells. Exposing cells to each of these samples induced the emission of VOCs, which we tentatively assigned to acetonitrile, benzaldehyde and dimethylbenzaldehyde, respectively. Emission rates upon exposure to fresh and aged OA fromα-pinene oxidation and from biomass burning significantly exceeded those observed after exposure to similar doses of Cu(II), a proxy for transition metals with high oxidative potential. Emission rates of biomarkers from cell exposure toα-pinene SOA exhibited a statistically significant, but weak dose dependence. The emission rates of benzaldehyde scaled with cell death, estimated by measuring the apical release of cytosolic lactate dehydrogenase. Particle mass doses delivered to the BEAS-2B cells match those deposited in the human tracheobronchial tract after several hours of inhalation at elevated ambient air pollution. The results presented here show that our method has the potential to determine biomarkers of PM induced pulmonary damage in toxicological and epidemiological research on air pollution.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Aerossóis , Idoso , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Biomarcadores/metabolismo , Testes Respiratórios , Células Epiteliais , Humanos , Estresse Oxidativo , Material Particulado/análise , Material Particulado/toxicidade , Compostos Orgânicos Voláteis/toxicidade
2.
Sci Adv ; 6(11): eaax8922, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32201715

RESUMO

Highly oxygenated organic molecules (HOMs) are formed from the oxidation of biogenic and anthropogenic gases and affect Earth's climate and air quality by their key role in particle formation and growth. While the formation of these molecules in the gas phase has been extensively studied, the complexity of organic aerosol (OA) and lack of suitable measurement techniques have hindered the investigation of their fate post-condensation, although further reactions have been proposed. We report here novel real-time measurements of these species in the particle phase, achieved using our recently developed extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF). Our results reveal that condensed-phase reactions rapidly alter OA composition and the contribution of HOMs to the particle mass. In consequence, the atmospheric fate of HOMs cannot be described solely in terms of volatility, but particle-phase reactions must be considered to describe HOM effects on the overall particle life cycle and global carbon budget.

3.
Sci Rep ; 7(1): 4926, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28706240

RESUMO

Carbonaceous particulate matter (PM), comprising black carbon (BC), primary organic aerosol (POA) and secondary organic aerosol (SOA, from atmospheric aging of precursors), is a highly toxic vehicle exhaust component. Therefore, understanding vehicle pollution requires knowledge of both primary emissions, and how these emissions age in the atmosphere. We provide a systematic examination of carbonaceous PM emissions and parameterisation of SOA formation from modern diesel and gasoline cars at different temperatures (22, -7 °C) during controlled laboratory experiments. Carbonaceous PM emission and SOA formation is markedly higher from gasoline than diesel particle filter (DPF) and catalyst-equipped diesel cars, more so at -7 °C, contrasting with nitrogen oxides (NOX). Higher SOA formation from gasoline cars and primary emission reductions for diesels implies gasoline cars will increasingly dominate vehicular total carbonaceous PM, though older non-DPF-equipped diesels will continue to dominate the primary fraction for some time. Supported by state-of-the-art source apportionment of ambient fossil fuel derived PM, our results show that whether gasoline or diesel cars are more polluting depends on the pollutant in question, i.e. that diesel cars are not necessarily worse polluters than gasoline cars.

4.
J Geophys Res Atmos ; 121(6): 3036-3049, 2016 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-27610289

RESUMO

Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF (Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4-H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self-contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit.

5.
Science ; 352(6289): 1109-12, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27226488

RESUMO

New particle formation (NPF) is the source of over half of the atmosphere's cloud condensation nuclei, thus influencing cloud properties and Earth's energy balance. Unlike in the planetary boundary layer, few observations of NPF in the free troposphere exist. We provide observational evidence that at high altitudes, NPF occurs mainly through condensation of highly oxygenated molecules (HOMs), in addition to taking place through sulfuric acid-ammonia nucleation. Neutral nucleation is more than 10 times faster than ion-induced nucleation, and growth rates are size-dependent. NPF is restricted to a time window of 1 to 2 days after contact of the air masses with the planetary boundary layer; this is related to the time needed for oxidation of organic compounds to form HOMs. These findings require improved NPF parameterization in atmospheric models.

6.
J Mass Spectrom ; 50(4): 662-71, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26149110

RESUMO

The mass spectral signatures of airborne bacteria were measured and analyzed in cloud simulation experiments at the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) facility. Suspensions of cultured cells in pure water were sprayed into the aerosol and cloud chambers forming an aerosol which consisted of intact cells, cell fragments and residual particles from the agar medium in which the bacteria were cultured. The aerosol particles were analyzed with a high-resolution time-of-flight aerosol mass spectrometer equipped with a newly developed PM2.5 aerodynamic lens. Positive matrix factorization (PMF) using the multilinear engine (ME-2) source apportionment was applied to deconvolve the bacteria and agar mass spectral signatures. The bacteria mass fraction contributed between 75 and 95% depending on the aerosol generation, with the remaining mass attributed to agar. We present mass spectra of Pseudomonas syringae and Pseudomonas fluorescens bacteria typical for ice-nucleation active bacteria in the atmosphere to facilitate the distinction of airborne bacteria from other constituents in ambient aerosol, e.g. by PMF/ME-2 source apportionment analyses. Nitrogen-containing ions were the most salient feature of the bacteria mass spectra, and a combination of C4 H8 N(+) (m/z 70) and C5 H12 N(+) (m/z 86) may be used as marker ions.


Assuntos
Aerossóis/química , Bactérias/química , Espectrometria de Massas/métodos , Proteínas de Bactérias/análise , Proteínas de Bactérias/química , Elétrons , Gelo
7.
Nat Commun ; 5: 3749, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24825457

RESUMO

Fossil fuel-powered vehicles emit significant particulate matter, for example, black carbon and primary organic aerosol, and produce secondary organic aerosol. Here we quantify secondary organic aerosol production from two-stroke scooters. Cars and trucks, particularly diesel vehicles, are thought to be the main vehicular pollution sources. This needs re-thinking, as we show that elevated particulate matter levels can be a consequence of 'asymmetric pollution' from two-stroke scooters, vehicles that constitute a small fraction of the fleet, but can dominate urban vehicular pollution through organic aerosol and aromatic emission factors up to thousands of times higher than from other vehicle classes. Further, we demonstrate that oxidation processes producing secondary organic aerosol from vehicle exhaust also form potentially toxic 'reactive oxygen species'.


Assuntos
Aerossóis/análise , Poluição do Ar/análise , Cidades , Motocicletas , Material Particulado/análise , Espécies Reativas de Oxigênio/análise , Emissões de Veículos/análise , Ásia , Europa (Continente) , Combustíveis Fósseis , Humanos
8.
Environ Sci Technol ; 46(20): 11418-25, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-22970884

RESUMO

Primary emissions from a log wood burner and a pellet boiler were characterized by online measurements of the organic aerosol (OA) using a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and of black carbon (BC). The OA and BC concentrations measured during the burning cycle of the log wood burner, batch wise fueled with wood logs, were highly variable and generally dominated by BC. The emissions of the pellet burner had, besides inorganic material, a high fraction of OA and a minor contribution of BC. However, during artificially induced poor burning BC was the dominating species with ∼80% of the measured mass. The elemental O:C ratio of the OA was generally found in the range of 0.2-0.5 during the startup phase or after reloading of the log wood burner. During the burnout or smoldering phase, O:C ratios increased up to 1.6-1.7, which is similar to the ratios found for the pellet boiler during stable burning conditions and higher than the O:C ratios observed for highly aged ambient OA. The organic emissions of both burners have a very similar H:C ratio at a given O:C ratio and therefore fall on the same line in the Van Krevelen diagram.


Assuntos
Poluentes Atmosféricos/análise , Culinária/instrumentação , Material Particulado/análise , Fuligem/análise , Poluição do Ar/estatística & dados numéricos , Biomassa , Culinária/estatística & dados numéricos , Monitoramento Ambiental , Madeira
9.
Sci Total Environ ; 427-428: 191-202, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22572211

RESUMO

The chemical composition and sources of ambient particulate matter (PM) in Switzerland were studied. PM(1) and PM(10) samples were collected in winter and summer at an urban background site in Zurich and a rural background site in Payerne. Concentrations of major and trace elements, NO(3)(-), SO(4)(2-), NH(4)(+), organic and elemental carbon were determined. A subsequent Positive Matrix Factorization (PMF) analysis was performed. PM(10) and PM(1) concentrations varied similarly at both sites, with average PM(10) concentrations 24-25 µg/m(3) and 13-14 µg/m(3) in winter and summer, respectively, and average PM(1) concentrations 12-17 µg/m(3) and 6-7 µg/m(3). The influence of local sources was found to be higher in winter. PM was dominated by nitrate and organic matter in winter, and by mineral matter and organic matter in summer. Trace element concentrations related to road traffic (Zn, Cu, Sb, Sn) were higher at Zurich. Concentrations of Tl and Cs, attributed to the influence of a glass industry, were higher at Payerne. The elements mainly present in the coarse fraction were those related to mineral matter and brake and tyre abrasion (Cu, Mn, Ti, Sb, Sr, Bi, Li, La, Nd), and those in the fine fraction were related to high temperature anthropogenic processes (Pb, As, Cd, Tl, Cs). Common PM(1) and PM(1-10) sources identified by PMF were: ammonium nitrate, present in winter, negligible in summer; ammonium sulfate+K(biomass burning)+road traffic; and road traffic itself, related to exhaust emissions in PM(1) and to road dust resuspension in PM(1-10). Size-fraction specific sources were: a PM(1) glass industry source characterized by Cs, Tl, Rb, Li and Na, only present in Payerne; a PM(1) background source characterized by V, Ni, sulfate and Fe; two PM(1-10) mineral-related sources, with higher contribution in summer; a PM(1-10) salt source; and a PM(1-10) organic source, with higher contribution in summer, attributed to bioaerosols.


Assuntos
Poluentes Atmosféricos/análise , Tamanho da Partícula , Material Particulado/análise , Cidades , Monitoramento Ambiental , Indústrias , Estações do Ano , Suíça , Oligoelementos/análise , Emissões de Veículos/análise
10.
Anal Chem ; 83(1): 67-76, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21126058

RESUMO

The European Commission recently established a novel test facility for heavy-duty vehicles to enhance more sustainable transport. The facility enables the study of energy efficiency of various fuels/scenarios as well as the chemical composition of evolved exhaust emissions. Sophisticated instrumentation for real-time analysis of the gas and particulate phases of exhaust has been implemented. Thereby, gas-phase characterization was carried out by a Fourier transform infrared spectrometer (FT-IR; carbonyls, nitrogen-containing species, small hydrocarbons) and a resonance-enhanced multiphoton ionization time-of-flight mass spectrometer (REMPI-TOFMS; monocyclic and polycyclic aromatic hydrocarbons). For analysis of the particulate phase, a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS; organic matter, chloride, nitrate), a condensation particle counter (CPC; particle number), and a multiangle absorption photometer (MAAP; black carbon) were applied. In this paper, the first application of the new facility in combination with the described instruments is presented, whereby a medium-size truck was investigated by applying different driving cycles. The goal was simultaneous chemical characterization of a great variety of gaseous compounds and particulate matter in exhaust on a real-time basis. The time-resolved data allowed new approaches to view the results; for example, emission factors were normalized to time-resolved consumption of fuel and were related to emission factors evolved during high speeds. Compounds could be identified that followed the fuel consumption, others showed very different behavior. In particular, engine cold start, engine ignition (unburned fuel), and high-speed events resulted in unique emission patterns.

11.
Sci Total Environ ; 408(21): 5106-16, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20692024

RESUMO

European regulation for Euro 5/6 light duty emissions introduced the measurement of non-volatile particles with diameter >23 nm. The volatile phase is removed by using a heated dilution stage (150 degrees C) and a heated tube (at 300-400 degrees C). We investigated experimentally the removal efficiency for volatile species of the specific protocol by conducting measurements with two Euro 3 diesel light duty vehicles, a Euro 2 moped, and a Euro III heavy duty vehicle with the system's heaters on and off. The particle number distributions were measured with a Scanning Mobility Particle Sizer (SMPS) and a Fast Mobility Particle Sizer (FMPS). An Aerosol Mass Spectrometer (AMS) was used to identify the non-refractory chemical composition of the particles. A Multi-Angle Absorption Photometer (MAAP) was used to measure the black carbon concentration. The results showed that the condensed material in the accumulation mode (defined here as particles in the diameter range of approximately 50-500 nm) was removed with an efficiency of 50-90%. The (volatile) nucleation mode was also completely evaporated or was decreased to sizes <23 nm; thus these particles wouldn't be counted from the particle counter, indicating the robustness of the protocol.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Monitoramento Ambiental/métodos , Recuperação e Remediação Ambiental/instrumentação , Material Particulado/análise , Emissões de Veículos/prevenção & controle , Aerossóis/química , Poluentes Atmosféricos/química , Poluição do Ar/legislação & jurisprudência , Meio Ambiente , Recuperação e Remediação Ambiental/legislação & jurisprudência , Regulamentação Governamental , Material Particulado/química , Emissões de Veículos/análise
12.
Environ Sci Technol ; 44(17): 6601-7, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20684503

RESUMO

This study reports the potential toxicological impact of particles produced during biomass combustion by an automatic pellet boiler and a traditional logwood stove under various combustion conditions using a novel profluorescent nitroxide probe, BPEAnit. This probe is weakly fluorescent but yields strong fluorescence emission upon radical trapping or redox activity. Samples were collected by bubbling aerosol through an impinger containing BPEAnit solution, followed by fluorescence measurement. The fluorescence of BPEAnit was measured for particles produced during various combustion phases: at the beginning of burning (cold start), stable combustion after refilling with the fuel (warm start), and poor burning conditions. For particles produced by the logwood stove under cold-start conditions, significantly higher amounts of reactive species per unit of particulate mass were observed compared to emissions produced during a warm start. In addition, sampling of logwood burning emissions after passing through a thermodenuder at 250 degrees C resulted in an 80-100% reduction of the fluorescence signal of the BPEAnit probe, indicating that the majority of reactive species were semivolatile. Moreover, the amount of reactive species showed a strong correlation with the amount of particulate organic material. This indicates the importance of semivolatile organics in particle-related toxicity. Particle emissions from the pellet boiler, although of similar mass concentration, were not observed to lead to an increase in fluorescence signal during any of the combustion phases.


Assuntos
Incêndios , Corantes Fluorescentes/química , Óxidos de Nitrogênio/química , Material Particulado/química , Madeira/metabolismo , Peso Molecular , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Fluorescência , Temperatura
13.
Faraday Discuss ; 137: 205-22; discussion 297-318, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18214105

RESUMO

In this paper, results are presented of the influence of small organic- and soot-containing particles on the formation of water and ice clouds. There is strong evidence that these particles have grown from nano particle seeds produced by the combustion of oil products. Two series of field experiments are selected to represent the observations made. The first is the CLoud-Aerosol Characterisation Experiment (CLACE) series of experiments performed at a high Alpine site (Jungfraujoch), where cloud was in contact with the ground and the measuring station. Both water and ice clouds were examined at different times of the year. The second series of experiments is the CLOud Processing of regional Air Pollution advecting over land and sea (CLOPAP) series, where ageing pollution aerosol from UK cities was observed, from an airborne platform, to interact with warm stratocumulus cloud in a cloud-capped atmospheric boundary layer. Combining the results it is shown that aged pollution aerosol consists of an internal mixture of organics, sulfate, nitrate and ammonium, the organic component is dominated by highly oxidized secondary material. The relative contributions and absolute loadings of the components vary with location and season. However, these aerosols act as Cloud Condensation Nuclei (CCN) and much of the organic material, along with the other species, is incorporated into cloud droplets. In ice and mixed phase cloud, it is observed that very sharp transitions (extending over just a few metres) are present between highly glaciated regions and regions consisting of supercooled water. This is a unique finding; however, aircraft observations in cumulus suggest that this kind of structure may be found in these cloud types too. It is suggested that this sharp transition is caused by ice nucleation initiated by oxidised organic aerosol coated with sulfate in more polluted regions of cloud, sometimes enhanced by secondary ice particle production in these regions.


Assuntos
Gelo , Água/química , Aerossóis/química , Tamanho da Partícula , Volatilização
14.
Rapid Commun Mass Spectrom ; 20(15): 2343-7, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16921534

RESUMO

A wet oxidation method for the compound-specific determination of stable carbon isotopes (delta(13)C) of organic acids in the gas and aerosol phase, as well as of water-soluble organic carbon (WSOC), is presented. Sampling of the organic acids was done using a wet effluent diffusion denuder/aerosol collector (WEDD/AC) coupled to an ion chromatography (IC) system. The method allows for compound-specific stable carbon isotope analysis by collecting different fractions of organic acids at the end of the IC system using a fraction collector. delta(13)C analyses of organic acids were conducted by oxidizing the organic acids with sodium persulfate at a temperature of 100 degrees C and determining the delta(13)C value of the resulting carbon dioxide (CO(2)) with an isotope ratio mass spectrometer. In addition, analysis of delta(13)C of the WSOC was performed for particulate carbon collected on aerosol filters. The WSOC was extracted from the filters using ultrapure water (MQ water), and the dissolved organic carbon was oxidized to CO(2) using the oxidation method. The wet oxidation method has an accuracy of 0.5 per thousand with a precision of +/-0.4 per thousand and provides a quantitative result for organic carbon with a detection limit of 150 ng of carbon.


Assuntos
Ácidos/química , Aerossóis/análise , Atmosfera/química , Dióxido de Carbono/análise , Isótopos de Carbono/análise , Monitoramento Ambiental/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos/análise , Carbono/análise
15.
Faraday Discuss ; 130: 265-78; discussion 363-86, 519-24, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16161788

RESUMO

Secondary organic aerosol (SOA) formation from the photooxidation of an anthropogenic (1,3,5-trimethylbenzene) and a biogenic (alpha-pinene) precursor was investigated at the new PSI smog chamber. The chemistry of the gas phase was followed by proton transfer reaction mass spectrometry, while the aerosol chemistry was investigated with aerosol mass spectrometry, ion chromatography, laser desorption ionization mass spectrometry, and infrared spectroscopy, along with volatility and hygroscopicity studies. Evidence for oligomer formation for SOA from both precursors was given by an increasing abundance of compounds with a high molecular weight (up to 1000 Da) and by an increasing thermal stability with increasing aging time. The results were compared to data obtained from ambient aerosol samples, revealing a number of similar features.


Assuntos
Aerossóis/análise , Derivados de Benzeno/análise , Monoterpenos/análise , Oxidantes Fotoquímicos/química , Ozônio/análise , Aerossóis/química , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Monoterpenos Bicíclicos , Cromatografia por Troca Iônica , Peso Molecular , Ozônio/química , Análise Espectral , Temperatura
16.
Anal Chem ; 76(22): 6535-40, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15538773

RESUMO

Organic acids in the gas and aerosol phase from photooxidation of 1,3,5-trimethylbenzene in the presence of 300 ppb propene and 300 ppb NOx in smog chamber experiments were determined using a wet effluent diffusion denuder/aerosol collector coupled to ion chromatography (IC) with conductivity detection. Behind the IC, the samples were collected using a fraction collector, for identification of unresolved/unidentified organic acids with IC-mass spectrometry (MS). In total, 20 organic acids were found with MS of which 10 were identified. The organic acids identified offline by IC-MS were then further quantified based on the online IC data. The identification was additionally confirmed with gas chromatography-mass spectrometry. At the maximum aerosol concentration, organic acids comprised 20-45% of the total aerosol mass. The method has a detection limit of 10-100 ng/m3 for the identified carboxylic acids.

17.
Science ; 303(5664): 1659-62, 2004 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-15016998

RESUMO

Results from photooxidation of aromatic compounds in a reaction chamber show that a substantial fraction of the organic aerosol mass is composed of polymers. This polymerization results from reactions of carbonyls and their hydrates. After aging for more than 20 hours, about 50% of the particle mass consists of polymers with a molecular mass up to 1000 daltons. This results in a lower volatility of this secondary organic aerosol and a higher aerosol yield than a model using vapor pressures of individual organic species would predict.

18.
Environ Sci Technol ; 36(1): 55-62, 2002 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-11811490

RESUMO

A hygroscopicity tandem differential mobility analyzer (H-TDMA) is described that allows a fast and accurate determination of the water uptake by submicrometer aerosol particles at temperatures below 0 degrees C. To avoid volatilization of semivolatile particles, the humidification works without heating the gas stream, and the gas-phase composition is not changed during the analysis. The applied scanning mobility analysis allows a fast and accurate measurement of the humidogram, but care has to be taken with too high scanning velocities leading to artifacts in the particle size measurement. During a field campaign at a high-alpine site (Jungfraujoch, 3580 m above sea level), humidograms of free tropospheric particles were measured at T= -10 degrees C. The hygroscopic growth of these particles was characterized by monomodal growth distributions, which means that in the observed size range (dry particle diameters (Do) = 50-250 nm) the free tropospheric aerosol was to a large extent internally mixed. No distinct deliquescence was observed, indicating that the multicomponent aerosol particles are present in a liquid state even at a low relative humidity (RH) <10%. At RH 85%, average hygroscopic growth factors of 1.44, 1.49, and 1.53 were measured for Do = 50, 100, and 250 nm. The estimated soluble volume fraction of the particles in the observed size range was found to be 0.79, 0.86, and 0.91, respectively.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/instrumentação , Aerossóis/análise , Umidade , Tamanho da Partícula , Sensibilidade e Especificidade , Solubilidade , Temperatura
19.
Environ Sci Technol ; 36(1): 63-8, 2002 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-11811491

RESUMO

A Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA) system has been used to measure hygroscopic growth curves and deliquescence relative humidities (DRH) of laboratory generated (NH4)2SO4, NaCl, and NaNO3 particles at temperatures T= 20 degrees C and -10 degrees C. Good agreement (better than 3.5%) between measured growth curves and Köhler theory was found using empirical temperature and concentration dependent values for water activity, solution density, and surface tension. The measured growth curves only experience a small temperature dependence in the observed temperature range. Therefore, to a first approximation, it is possible to neglect the temperature dependence of the water activity for theoretical calculations in the temperature range -10 degrees C < T < 25 degrees C. The small differences between experiment and theory, which were predominantly observed for NaCl particles, are probably caused by a small amount of water adsorbed on the "dry" crystals. It was also observed that these particles experience a significant restructuring at relative humidity RH < DRH, which was also taken into account for a comparison with theoretical curves. If salt particles are used for instrument calibration, precautions regarding the dry particle diameter have to be taken.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/instrumentação , Adsorção , Aerossóis/análise , Calibragem , Cristalização , Tamanho da Partícula , Temperatura
20.
Environ Sci Technol ; 35(11): 2191-9, 2001 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-11414018

RESUMO

Soot particles were collected from a diesel engine using a procedure that realistically mimics exhaust gas conditions in tailpipes and during dilution at room temperature. After being sampled, the particles were exposed to NO2 concentrations and relative humidity in ranges relevant for the troposphere using 13N as tracer. Gas-phase nitrous acid(HONO) and irreversibly bound (i.e., chemisorbed) species were the main reaction products with initial yields of 80-90% and about 10%, respectively. Neither NO nor HNO3 were detectable. The HONO formation increased with increasing engine load (i.e., with a decreasing air to fuel ratio, lambda). The reaction rates of HONO and chemisorbed NO2 increased with increasing NO2 concentration and did not depend on relative humidity. At the beginning of reaction, the uptake coefficient averaged over 3 min ranged from 5 x 10(-6) to 10(-5) for NO2 concentrations between 2 and 40 ppb. The HONO formation rates decreased with time, indicating consumption of reactive surface species, while the chemisorption rates remained almost constant. The total HONO formation potential of the particles was estimated to about 1.3 x 10(17) molecules/mg of diesel soot or to about 4.7 mg/kg of diesel fuel, indicating that the reaction between NO2 and diesel soot particles does not provide a significant secondary HONO source in the atmosphere. A Langmuir-Hinshelwood type reaction mechanism was proposed that adequately describes the observed results and also allows discussing important general features of reactions on soot.


Assuntos
Modelos Químicos , Dióxido de Nitrogênio/análise , Ácido Nitroso/análise , Emissões de Veículos/análise , Monitoramento Ambiental , Umidade , Dióxido de Nitrogênio/química , Ácido Nitroso/química , Oxirredução , Tamanho da Partícula , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...